Call or complete the form to contact us for details and to book directly with us
435-425-3414
435-691-4384
888-854-5871 (Toll-free USA)

 

Contact Owner

*Name
*Email
Phone
Comment
 
Skip to Primary Navigation Skip to Primary Content Skip to Footer Navigation

Great Green Challenges - ORIGINAL CONTENT

By:
Edward A. Reid Jr.
Posted On:
Jul 9, 2024 at 6:00 AM
Category
Energy Policy, Climate Change

Many in the climate change alarmist community view green Hydrogen as the Great Green Hope. The previous commentary, Great Green Hope, dealt with the steps necessary to produce green Hydrogen and their current costs. However, that is only part of the process.

Green Hydrogen has multiple potential applications in a Net Zero energy economy. Massive storage in underground caverns could serve as long-duration backup for intermittent renewable generation, used as fuel for Hydrogen fuel cells or combined-cycle and simple-cycle gas turbines. Preparation of these caverns would require testing to determine their volume and safe working pressure, evacuation to remove the air from the caverns and filling the caverns with Hydrogen to the safe working pressure. A portion of the Hydrogen stored in the caverns would remain as “cushion gas”, providing the pressure required to feed gas to the electric generators.

Green Hydrogen could be used as motor fuel for vehicles of all types, including railroad locomotives. This application would require the Hydrogen to be compressed to 5,000 – 10,000 psi and stored in fueling cascades at vehicle fueling stations. The Hydrogen could be delivered to the fueling stations by pipeline and compressed on-site, or as a cryogenic liquid regasified and compressed on-site, or as compressed gas delivered by rail or truck, depending on fueling station access.

Green Hydrogen could also be used as fuel for combustion appliances, such as furnaces, boilers, water heaters, range tops and ovens in residential and commercial structures. This application would require either pipeline delivery or on-site pressurized storage. This application would also require Hydrogen dedicated appliances or refitting of individual appliances to burn Hydrogen safely.

Finally, there are multiple potential applications for green Hydrogen in industrial applications, both as a combustion fuel and as a chemical feedstock. These applications would typically require pipeline delivery.

Hydrogen is currently used as vehicle fuel, on a very limited basis, and as a chemical feedstock. Most of this Hydrogen is “Blue Hydrogen”, produced by steam reforming of natural gas. Blue Hydrogen is relatively inexpensive, but its production results in CO2 emissions, which means it is not suitable for large scale application in a Net Zero energy economy.

Hydrogen is currently delivered by pipeline, or by truck as either a cryogenic liquid or a compressed gas. However, the delivery infrastructure is very limited relative to the infrastructure which would be required to replace natural gas with Hydrogen in a broad range of applications in a Net Zero energy economy. There is a possibility that the existing natural gas transmission and distribution system could be upgraded and adapted to Hydrogen delivery. However, the required technology has not been identified and demonstrated.

There is also the possibility that a Green Hydrogen trade could be developed to replace the current trade in liquified natural gas. Liquid Hydrogen ships could be fueled with boil-off from the cargo, as is the case with LNG tankers. Liquid hydrogen could also be used to fuel other types of ships, again using boil-off from an onboard cryogenic fuel storage vessel.