Call or complete the form to contact us for details and to book directly with us
435-425-3414
435-691-4384
888-854-5871 (Toll-free USA)

 

Contact Owner

*Name
*Email
Phone
Comment
 
Skip to Primary Navigation Skip to Primary Content Skip to Footer Navigation
▽ Explore More ▽ Hide

US Energy Policy

US Energy Policy

Energy Policy

The incandescent lightbulb is now outlawed.[1]  This fact is a perfect metaphor for “energy policy.”  Should it be illegal in the United States to manufacture, sell, buy, and use a traditional incandescent light bulb?  Your informed answer to that question will provide deep insight into your views on hundreds of other energy policy questions.   (BTW, my answer is no, but I bet you guessed that.)

Energy is the lifeblood of our economy; it touches your life in a hundred ways each day.  Yet energy policy--the set of government rules and regulations that prescribe how energy is produced, delivered, and consumed--is a complex and even a chaotic subject.

Energy was an uninteresting subject for the average person prior to the OPEC Oil Embargo in 1973.  Oil prices had been stable at about $20 a barrel in real terms for nearly a century and electricity prices had declined from about 22 cents per kilowatt to about 13 cents from 1960 to 1973, even as consumption of electricity quadrupled from 1950 to 1973, as more and more homes and appliances used electricity and utilities became better at building large coal and nuclear plants.

But the OPEC Embargo changed everything about energy and energy policy.  Four points will illustrate this importance. 

  • President Jimmy Carter’s presidency (1976 to 1980) was dominated by energy issues which he characterized as the “moral equivalent of war.” 
  • A little more than two decades later a California governor was recalled because he botched an electricity crisis in California and Arnold Schwarzenegger was elected Governor. 
  • There is a widespread perception that the US has gone to war in the Middle East over oil issues.
  • The Pope of all people has recently declared war on climate change, most of which is laid at the feet of fossil energy.

Part of the complication in energy policy is that it must be addressed on many fronts; international, national, State, and local governments all have a role in stirring the pot. 

Many books and articles are written on very specific aspects of energy policy but most are written for other experts.  Surprisingly, few are written that cover the broad landscape of energy policy.  Even fewer of these writings take a strong market-oriented perspective; the vast majority take an interventionist approach largely for environmental and oil import reasons.  And none that I have found are addressed to the pro-market political activist who has a real job during the day and then tries to save the country in his or her spare time.  This discussion is for that heroic citizen, The Forgotten Man.

So what’s the bottom line on energy policy? 

  • First, we make energy policy much more difficult than it has to be.  Energy is a commodity just like wheat or cars or hamburgers.  Mostly, we rely on competitive markets in each of these other commodity industries to make sure that we have an adequate supply to meet the consumers’ needs at reasonable prices.  But we treat energy differently.  I venture to guess that there are only a few industries more affected by government intervention than energy.  Why is that?  Does that mean we benefit from that intervention?  Is there a better way?  The article explores these questions.
  • Second, right now energy policy is being driven by climate change.  Even if one is sympathetic to some of the claims made about climate change, many stupid actions are being taken in its name that has profoundly negative effects on energy markets. 
  • Third, oil issues get the most attention but we do not face any real danger in oil markets.  Oil trades in global markets and while there may be price fluctuations (as I write, oil is about $35 a barrel, having been over $100 in the recent past), we will never face a situation where we run out of oil.  Most countries with plentiful oil have built their economies on oil revenue and the recent drop in oil prices has created serious political problems for these countries.  They simply can’t afford not to produce oil.  But problems in oil markets can result in unnecessarily higher prices and thus we need to pay some attention to them in order to promote prosperity. 
  • Fourth and most important, electricity faces real problems that could result in catastrophic failure of the system, thus threatening not only prosperity but human life.  The major framework for electric policy was set in 1935.  That framework worked fine up to the OPEC Embargo.  Electricity can compete against oil and natural gas in many applications.  Thus adjustments were necessary to the historical framework after the Embargo.  But policymakers have only nibbled at the edges of electricity policy and have not fundamentally changed the 1935 framework.  Yet little more than additional tinkering is being done to promote an electricity industry for the 21st Century.  Many special interests are pushing and pulling on the antiquated framework for personal gain but few are fundamentally committed to a complete rethinking of the role of the electric system of the future, especially given the increasing digitalization of our economy.  And as noted above, unsound policies on climate change make electric issues even more difficult.


[1] This is a good place to make a point.  Some pointy headed academics will disagree with even this first sentence.  Technically, Congress did not “ban” incandescent bulbs in the Energy Independence and Security Act of 2007.  Rather, they set a standard that most, if not all, traditional incandescent bulbs could not achieve and established a schedule for light bulbs of different wattages to meet this standard.  So it is fair to say that Congress outlawed incandescent bulbs.  But since the accompanying Article is a synthesis of the broad topic of “energy policy” it would needlessly clutter and complicate the text to be “technically” accurate in every instance.  The size of the document would need to double and the reader would understand less of the essence of energy policy if I did not make some broad generalizations.  Nonetheless, I am sure I will receive some criticism that many of my statements are not “technically correct.”  I hope that making this point early in the article will allow for a better understanding of the content of the Article.

 

No Coal Storage - ORIGINAL CONTENT

In a summary of a recent peer-reviewed paper, the principal author stated that an electric grid predominantly powered by intermittent renewables such as wind and solar would require storage approximately equal to 25% of annual generation to be reliable. Other studies have reported similar results.

US coal powerplants produced approximately 700,000 GWH of electricity in 2023. The Administration has announced a goal of eliminating coal generation by 2030. Achieving this goal would require installation of approximately 270 GW of wind and solar rating plate capacity generation, depending on the percentages of wind and solar generation.

Based on the Fekete paper, the US would also require a total of approximately 175,000 GWH of additional electricity storage as the result of the elimination of coal power plants. The primary battery storage system currently being installed for grid level storage is the Tesla Megapack, which stores 19.3 MWH deliverable at a rate of 4.9 MW over a 4-hour period. Utilizing Tesla Megapacks to support the intermittent wind and solar generation installed to replace US coal powerplants would require 9,067.357 units at a current installed cost of $8,128,870 per unit, for a total installed cost of $74 trillion.

Research suggests that battery life can be extended by operating the batteries between 20% and 80% of full charge. Grid scale batteries would be expected to operate below 20% of full charge very rarely, so the lower limit can essentially be ignored. However, limiting the batteries to a maximum charge of 80%, while maintaining necessary electricity storage would require increasing the installed battery capacity by 25%, at an installed cost of approximately $18 trillion, increasing the total battery system installed cost to approximately $92 trillion. (Note: These costs do not include the land required for installation or the cost of grid connection.)

The US currently has an electricity storage deficit of approximately 140,000 GWH. Fossil fueled generation currently provides support for the existing wind and solar generation in the absence of this storage and there is growing concern regarding grid capacity margins during peak demand periods. Therefore, as coal powerplants are decommissioned, it would be essential that the current storage deficit be eliminated as well as installing the additional storage required to support the intermittent generating capacity which would provide the generation previously provided by the coal powerplants. This would require the installation of approximately 18 million Tesla Megapacks (or equivalent). Currently, production capacity does not exist to meet this demand over the next 6 years.

Also, as coal power plants are decommissioned, there will be a growing need for long-duration storage to support the grid through seasonal variation in both wind and solar generation. The only current long-duration systems are pumped hydro facilities. However, it is unlikely that significant additional pumped hydro capacity will be installed in the US because of geographic limitations and public resistance.

 

Tags: Electric Power Generation, Coal, Energy Storage / Batteries, Fossil Fuel Elimination / Reduction

200 Ways the Biden Administration and Democrats Have Made it Harder to Produce Oil & Gas - Highlighted Article

  • 4/11/24 at 06:00 AM


From: IER

By: Thomas J. Pyle

Date: March 7, 2024


200 Ways the Biden Administration and Democrats Have Made it Harder to Produce Oil & Gas


President Biden and Democrats have a plan for American energy: make it harder to produce and more expensive to purchase. Since Mr. Biden took office, his administration and its allies have taken over 200 actions deliberately designed to make it harder to produce energy here in America. A list of those actions, which includes a few high-profile actions taken in states like New York and California, appears below. A PDF of the full list is available to download here.

___________________________

On January 20, 2021,

  • Besides canceling the Keystone XL pipeline,
  • President Biden restricted domestic production by issuing a moratorium on all oil and natural gas leasing activities in the Arctic National Wildlife Refuge.
  • He also restored and expanded the use of the government-created social cost of carbon metric to artificially increase the regulatory costs of energy production of fossil fuels when performing analyses, as well as artificially increase the so-called “benefits” of decreasing production.
  • Biden continued to revoke Trump administration executive orders, including those related to the Waters of the United States rule and the Antiquities Act. The Trump-era actions decreased regulations on Federal land and expanded the ability to produce energy domestically

On January 27, 2021,

  • Biden issued an executive order announcing a moratorium on new oil and gas leases on public lands
  • or in offshore waters
  • and reconsideration of Federal oil and gas permitting and leasing practices.
  • He directed his Interior Department to conduct a review of permitting and leasing policies.
  • Also, by Executive Order, Biden directed agencies to eliminate federal fossil fuel “subsidies” wherever possible, disadvantaging oil and natural gas compared to other industries that receive similar Federal tax treatments or other energy sources which receive direct subsidies.
  • This Biden Executive Order attacked the energy industry by promoting “ending international financing of carbon-intensive fossil fuel-based energy while simultaneously advancing sustainable development and a green recovery.” In other words, the U.S. government would leverage its power to attack oil and gas producers while subsidizing favored industries.
  • Biden’s EO pushed for an increase in enforcement of “environmental justice” violations and support for such efforts, which typically are advanced by radical environmental organizations and slip-and-fall lawyers hoping to cash in on the backs of energy consumers. (continue reading)

 

200 Ways the Biden Administration and Democrats Have Made it Harder to Produce Oil & Gas

 

Tags: Highlighted Article

Current Storage Deficit - ORIGNAL CONTENT

In a summary of a recent peer-reviewed paper, the principal author stated that an electric grid predominantly powered by intermittent renewables such as wind and solar would require storage approximately equal to 25% of annual generation to be reliable. Other studies have reported similar results (here, here and here).

US wind and solar generation in 2023 totaled approximately 575,000 GWH. Based on the Fekete paper, the US would require a total of approximately 140,000 GWH of electricity storage to render this intermittent generation dispatchable, capable of replacing fossil fueled dispatchable generation. The US currently has approximately 60 GWH of battery storage and approximately 25,000 GWH of pumped hydro storage. This leaves an estimated storage deficit of approximately 115,000 GWH.

The primary battery storage system currently being installed for grid level storage is the Tesla Megapack, which stores 19.3 MWH deliverable at a rate of 4.9 MW over a 4-hour period. Eliminating the current US electricity storage deficit with Tesla Megapacks would require installation of 5,887,347 units at an estimated installed cost of $8,128,870 per unit, for a total installed cost of $48 trillion.

Research suggests that battery life can be extended by operating the batteries between 20% and 80% of full charge. Grid scale batteries would be expected to operate below 20% of full charge very rarely, so the lower limit can essentially be ignored. However, limiting the batteries to a maximum charge of 80%, while maintaining necessary electricity storage would require increasing the installed battery capacity by 25%, at an installed cost of approximately $12 trillion, increasing the total battery system installed cost to approximately $60 trillion. (Note: These costs do not include the land required for installation or the cost of grid connection.)

Tesla reports a roundtrip efficiency of approximately 95% for its Megapacks, significantly higher than the approximate 80% efficiency reported by EIA. NREL estimates current 4-hour battery costs at $500 per kWh, which is projected to drop to approximately $250 per kWh by 2050. The Tesla Megapack stores 19,600 kWh at an installed cost of approximately $415 per kWh.

Wind and solar currently generate approximately 12% of US utility scale electricity. Hydro, biomass and geothermal generate approximately 8%. Nuclear generates approximately 20%. The remaining 60% is generated using fossil fuels. Replacing these fossil fuel generators with dispatchable wind and solar generation plus storage would require installation of wind and solar capable of generating approximately an additional 2,540,000 GWH of electricity and storage capable of storing approximately an additional 630,000 GWH of electricity, preferably with much longer duration storage capability.

With apologies to the late Senator Everett McKinley Dirksen (R, IL);
“A trillion here. A trillion there. Soon you’re talking about real money.”

 

Tags: Solar Energy, Wind Energy, Electric Power Dispatchable, Energy Storage / Batteries

Wind Capacity Factor - ORIGINAL CONTENT

The capacity factor of wind generation systems varies as a function of geography, season of the year and time of day. The capacity of wind generation systems varies as a function of swept area, wind speed and turbine height. The current US wind turbine generation fleet has a capacity factor of approximately 35%. The capacity factor peaks in Spring at more than 40% and reaches a low in the mid-to-upper 20% range in Summer.

The map below shows the annual average wind speed at an elevation of 80 meters in the United States. Wind power density varies as the cube of wind speed, so wind speed is an extremely important siting factor. For example, an area with an average wind speed of 8 meters per second would offer a wind power density 8 times the wind power density available at an average wind speed of 4 meters per second. The area of the US with the highest annual average wind speeds extends North to South through the center of the contiguous 48 states, as shown below.

 

Annual Average Wind Speed at 80 m

 

The viewer at this link shows the locations of US wind facilities. The viewer can be adjusted to show the heights of the wind turbines and their capacities. The average individual wind turbine capacity at the installations shown in the viewer is 2 MW. Note that the wind turbine elevation at most of these installations exceeds 100 meters and approaches 200 meters.

The map below illustrates the US wind resource at an elevation of 100 meters, showing the greatest resource in the mid-continent, around the upper Great Lakes and along the East, West and Gulf coasts.

 

 

Annual Average Wind Speed at 100 m

 

 

The map below illustrates the US wind resource at an elevation of 200 meters, showing a similar resource distribution, but a significant increase in the magnitude of the available wind resource. This is clearly the incentive for increasing wind turbine mounting heights.

 

Annual Average Wind Speed at 200 m

 

 

These maps also illustrate the reason for the interest in offshore wind. The offshore wind velocities are significantly higher than onshore wind velocities near the coasts. Offshore location avoids wind installations in the densely populated coastal areas. Also, offshore wind installations would reduce transmission distances from the generator installations to the population centers along the coasts.
The images below show the relative height of the Statue of Liberty, the Washington Monument and the 15 MW wind turbines planned for the Dominion Energy Coastal Virginia Offshore Wind (CVOW) project. The Statue of Liberty stands 305 feet (93 meters) above sea level. The Washington Monument stands 555 feet (169 meters) above local grade. The turbine towers of CVOW would be approximately the same height as the Washington Monument. The rotor diameter would exceed 450 feet (137 meters), with a peak elevation above sea level of more than 800 feet (244 meters).

 

 

Windmill height comparison

 

 

The International Energy Agency (IEA) uses a capacity factor of 50% for offshore wind turbines, or approximately 40% higher than for onshore wind turbines. However, the cost per unit capacity for offshore wind turbines is higher than for onshore turbines and the cost of maintenance and repair is significantly higher.

 

Tags: Wind Energy

Climate Model Bias Series - Highlighted Series

  • 3/28/24 at 06:00 AM

 

From: Watts Up With That

By: Andy May

Date: February 28 - March 13, 2024


Climate Model Bias Series 1-7

 

Climate Model Bias 1: What is a Model? - February 28, 2024

Climate Model Bias 2: Modeling Greenhouse Gases - March 1, 2024

Climate Model Bias 3: Solar Input - March 3, 2024

Climate Model Bias 4: Convection and atmospheric circulation - March 4, 2024

Climate Model Bias 5: Storminess - March 9, 2024

Climate Model Bias 6: WGII - March 12, 2024

Climate Model Bias 7: WGIII - March 13, 2024

 

Climate Model Bias Series 1-7

 

Tags: Highlighted Article

Solar Capacity Factor - ORIGINAL CONTENT

The capacity factor of solar photovoltaic generation systems varies as a function of geography, season, time of day, weather conditions and solar collector type. The most common utility scale solar array consists of numerous parallel rows of flat plate collectors mounted in a fixed orientation and at a fixed mounting angle. In this installation configuration, the incoming solar insolation is perfectly perpendicular to the collector surface twice each year. Throughout the remainder of the year, the insolation strikes the collector surface from a above or below and from further East or West than the perpendicular, which reduces the ability of the solar system to achieve rating plate capacity.

The current fleet of these fixed solar arrays achieve an average annual capacity factor of approximately 25%. However, the monthly average capacity factor of current systems ranges from a high of ~32% in May and June to a low of ~13% in December, as the result of both lower sun elevation and reduced hours of daylight. These capacity factors are primarily for solar installations in the US desert southwest, where the seasonal variation in daily solar insolation varies by a factor of approximately 2.5, as illustrated in the maps shown here.

The map below illustrates the variation of annual direct solar insolation across the US.


Direct Normal Solar Irradiance Map - NREL


As utility scale solar installations continue to expand beyond the US southwest, the annual capacity factor of the solar installations will decrease as the result of lower sun angle and shorter hours of daylight, particularly during the winter months. For example, the realistic average daily solar insolation in Phoenix, Arizona reaches a peak of `6.7 kWh/m2/day in June and declines to ~2.5 kWh/m2/day in December, an approximate 63% reduction from peak. However, in Buffalo, New York the realistic average daily solar insolation reaches a peak of ~4.9 kWh/m2/day and declines to ~0.9 kWh/m2/day in December, an approximate 82% reduction from peak. Fairbanks, Alaska experiences a realistic average daily solar insolation peak of ~4.6 kWh/m2/day in June and declines to ~0 kWh/m2/day in December, an approximate 100% reduction.

The lower peak average daily solar insolation in most of the US, relative to the average daily solar insolation in the desert southwest, suggests that solar installations in most of the US would achieve lower capacity factors throughout the year, but especially in the winter, and would therefore have to be significantly larger than southwest installations to achieve the same annual generation output. For example, a solar installation in Buffalo, NY would be expected to have an annual capacity factor of approximately 18%.

The reduced solar capacity factors in the winter months would become an increasing concern as the US energy economy transitioned to “all-electric everything”, as most electric utilities would transition from summer peaking to winter peaking as fossil fueled space and water heating systems are replaced with electric appliances and equipment. Peak electricity demand would coincide with significantly reduced solar electricity generation, magnifying the need for electricity storage to bridge the gap between supply and demand.

 

Tags: Solar Energy

The ‘Energy Trilemma’ And The Cost Of Electricity – OpEd - Highlighted Article

  • 3/21/24 at 06:00 AM

 

From: Eurasia Review

By: Dr. Lars Schernikau

Date: January 17, 2024


The ‘Energy Trilemma’ And The Cost Of Electricity – OpEd


Why “Renewables” cannot save but cost Billions

Over the last 150 years, abundant electricity from coal and gas led to an unprecedented reduction in poverty, as well as an increase in longevity and health. Currently, these low cost, reliable power sources generate approximately 60% of electricity and 50% of primary energy worldwide. Primarily due to climate change concerns, coal and gas fuels are now slowly replaced by ‘renewables’, such as wind and solar based energy. But this comes with a cost.

Bloomberg issued their latest global Levelized Cost of Electricity (1) (LCOE) analysis in 2023, comparing the historical LCOE of various ‘renewables’ with the cost of coal, gas, and nuclear, drawing a misleading conclusion of wind and solar being most cost-effective (Figure 1). LCOE based reports and analyses also by other organizations such as IEA, IRENA, IEEFA, IMF, Agora, form the basis for many governments to mistakenly conclude that the transition from a coal and gas based power system to wind and solar will save billions, if not trillions at global scale.

Political decision makers know the three pillars of a successful energy policy (a) reliability, (b) affordability, and (c) environmental sustainability. But when taking a closer look, it becomes apparent that, power ministries are struggling to find a balance within this ‘Energy Trilemma’ and moreover, that the three pillars follow a specific priority:

As a prime concern, access to reliable energy is needed, before considering the affordability thereof. Once the balance between reliable and affordable energy is achieved, only then environmental sustainability can be tackled in a meaningful way.

Claiming “renewable” energy from wind and solar is cheap and comes without environmental consequences, is a crucial and detrimental energy economic misunderstanding.(continue reading)

 

The ‘Energy Trilemma’ And The Cost Of Electricity – OpEd

 

Tags: Highlighted Article

Time to Retire the Term “Renewable Energy” from Serious Discussions and Policy Directives: Part II - Highlighted Article

  • 3/14/24 at 06:00 AM


From: Climate Etc.

By: Planning Engineer (Russ Schussler)

Date: February 16, 2024


Time to Retire the Term “Renewable Energy” from Serious Discussions and Policy Directives: Part II


“Renewables”:  some resources support a healthy grid, other challenge it


The first part of this series discussed some of the shortcomings of the renewable/nonrenewable dichotomy.  Renewable generation resources are not necessarily sustainable or environmentally sound and non-renewable options can be clean and highly sustainable.  For example, you will find many ardent environmentalist groups strongly opposed to “renewable” biomass generation. Similarly, more and more environmentalists are dropping their objections to “nonrenewable” nuclear power. For those who are concerned with the health of the planet as well as those who want to use the earth for human flourishing the renewable/nonrenewable dichotomy is losing relevance. Referring generally to “renewable” and “nonrenewable”  resources or structuring policy to favor renewable does more harm than good as we face the complicate challenges ahead in maintain an adequate electric power supply in an environmentally responsible manner.

This posting examines the impacts of various generation alternatives s on the power system and the electric grid.   Renewable resources do not have a general impact on the grid; impacts vary by resource type. The various renewable resources alternatives available today differ greatly in how they impact the grid and should not be clustered.  Hydro resources with storage for example, work well to support the electric grid.  In fact, it may be the best resource available considering the varied needs of the major grids. Demanding loads that stress the system are often best located near hydro resources.  Other “renewable” resources to a greater or lesser extent may  present challenges to the operation of the grid and grid reliability.  In assessing the challenges of changing resources,  reports  that a particular grid is operating with 80% renewables may be impressive or virtually meaningless.  Of course, a grid can function well depending on 80% hydro resources, or 78% hydro and 2% wind and solar.  That’s very different and much less challenging than operating a grid with a penetration level of 40% wind and solar. Let’ look at some of the important characteristics of generation resources and how they differ among resource types. (continue reading)

 

Time to Retire the Term “Renewable Energy” from Serious Discussions and Policy Directives: Part II

 

Tags: Highlighted Article

Net Zero Emergency Power - ORIGINAL CONTENT

Many electricity customers in all customer classes have fossil fueled emergency or standby generators which they use to power some or all of their electrical loads in the event of a grid power outage. For some commercial customers, such as hospitals, standby power systems are essential to assure the safety of patients such as those undergoing surgical procedures. For some industrial customers, such as those who operate continuous processes, standby generators are required to avoid loss of product in process or to avoid damage to equipment. For many other customers, emergency or standby generators are used to avoid the inconvenience of power outages.

The net zero energy economy would require elimination of these on-site fossil fueled generators since they are too small to justify implementation of carbon capture and storage systems to eliminate CO2 emissions. In some cases, on-site generation could be replaced by electricity storage systems, charged either by the grid or by on-site solar and/or wind generation.

State laws generally require that standby generators for hospitals must either be fueled by pipeline natural gas or supported by on-site fuel storage. The design process for these installations includes determination of the demands of essential electrical loads which are to be supported by the generator and the duration of the grid outage through which the system must be able to operate. This information is used to size the generator(s) and to determine the required on-site storage for other than pipeline-delivered fuels.

The design process would be similar for standby systems based on electric storage batteries. Battery system design would determine both the cumulative demand of the loads to be supported by the batteries and the cumulative power consumption of those loads over the expected duration of the grid outage. This design process must be conservative, since the batteries cannot be recharged during power outages. Also, these battery systems would require long-duration batteries capable of supporting the required loads during multiple day outages.

Some larger customers might negotiate with the grid operators to install grid scale storage capacity on their properties, with the understanding that the customers would have first call on the battery capacity in the event of a grid outage. However, that would require that battery capacity installed on the customer sites be long-duration and that it be first in line for recharging in the event of storage drawdown due to limited wind or solar generation output.

Some larger customers or groups of customers might choose to install small modular nuclear reactors (SMRs) on-site. However, those customers would likely choose to use the SMRs as their primary source of electricity and to use the grid as backup or to supply loads which could be safely shed in the event of a grid outage.

An “all-electric everything” renewable plus storage grid is likely to be somewhat less reliable than the current predominantly fossil plus nuclear grid, especially during the period of rapid capacity and demand growth. This might lead greater numbers of customers to install on-site electricity storage systems.

 

Tags: Backup Power, Energy Storage / Batteries, Electric Power Reliability

The Retreat from Net Zero - Highlighted Article

  • 3/7/24 at 06:00 AM

 

From: Net Zero Watch

By: Ross Clark

Date: February 8, 2024


The Retreat from Net Zero

 

Introduction

The UN meetings on climate change have become renowned for their platitudes, with national leaders falling over each other to say what desparate straits the world is in, how we must decarbonise ever faster – before returning to their home countries and putting economic development well ahead of their promises to cut emissions. But the president of COP28 in Dubai in December 2023, Sultan Al Jaber, was unusually frank. Al Jaber, who also serves as the chair of Abu Dhabi state oil corporation, ADNOC, which recently announced a $150 billion investment to increase oil production by nearly 50 percent to 5 million barrels a day by 2027, appealed to former Irish President Mary Robinson: ‘show me a road map for the phase out of fossil fuel that allows for social, sustainable development…unless you want to take the world back into caves’.

Al Jaber was eviscerated for his comments, yet they were in tune with a silent majority. An analysis by the website Zero Tracker reveals that even countries with net zero targets are heavily resisting pressure to phase out exploration for and development of fossil fuel resources. There are 93 oil-producing countries that have net zero targets, but only six of them have plans to phase out oil. Only five out of 94 gas-producing countries with a net zero target have plans to phase out gas. As for coal-producing countries, only 65 of those with net zero targets have plans to stop production.

As always with COP meetings, the event ended with a communiqué promising that the world would try to ‘transition away’ from fossil fuels – which is a long way from agreeing to phase them out by a certain date, as many activists demanded. After two weeks and several hundred thousands of tonnes of carbon dioxide spewed out by private jets and the like, the 98,000 delegates who had signed up for COP28 had come up with nothing more than an empty promise.

In fact, the list of countries with plans to phase out fossil fuels is showing few signs of growing. The new government in New Zealand has just reneged on the previous administration‘s pledge to do so. In Germany, Federal Economics Minister Robert Habeck recently announced that he may delay the country’s planned phase-out of coal by 2030 because of the energy crisis provoked by the invasion of Ukraine.(continue reading)

 

The Retreat from Net Zero

 

Tags: Highlighted Article

Green New Dangers - ORIGINAL CONTENT

Much has been written regarding the effects of the “energy transition” on energy cost, availability, reliability and the structure and operation of the electric grid. Those are all important issues. All are fraught with degrees of uncertainty, since there has not been a successful demonstration of a renewable plus storage grid anywhere and there are no plans to conduct such a demonstration.

Little has been written about the effects of the “energy transition” on the lives of individuals and families who would be totally dependent on the electric grid for their energy needs. These effects would vary significantly depending on the local climate and also on local population density.

Residents of the northern plains, upper Midwest and New England are regularly subjected to harsh winters during which ambient temperatures can drop to as much as 125°F below body temperature. Residents of the southern tier of the US are regularly subjected to hot summers in which ambient temperatures can reach as much as 25°F above body temperature. This difference in ambient temperature relative to body temperature is the underlying reason why cold temperatures contribute to approximately 10 times more deaths more deaths than hot temperatures.

Residents of areas frequently exposed to very low ambient winter temperatures typically use natural gas, propane or fuel oil for space and water heating since these sources are more reliable than the electric grid in severe weather conditions; and, because electric space and water heating is more expensive than the alternatives. The use of electric heat pump space and water heaters is not common because of the poor low temperature performance of typical heat pumps. However, the fossil fuel space and water heating equipment would no longer be available after the “energy transition”.

Many residents in colder climates rely on gasoline or diesel emergency generators or natural gas, propane or diesel standby generators to supply power in the event of a grid outage. However, these generators would no longer be available after the “energy transition”.

Residents in these colder climates would instead be required to rely on electric heat pumps designed for cold weather operation. These heat pumps are beginning to enter the market but are not yet broadly available. They would also be required to rely on batteries to meet their emergency power needs in the event of a grid outage.

The most common gas furnace capacity is 100,000 Btu/hr. A furnace of this heating capacity would require less than 0.5 kW to power its controls and circulating fan, so the furnace could operate continuously in extremely cold weather for one day on a battery capacity of approximately 12 kWh. The Tesla Powerwall has a rated capacity of 13.5 kWh, so a fully charged Powerwall could support a typical gas furnace for approximately a full day, at an installed cost of approximately $9,000 – 13,000.

An electric heat pump operating at very low ambient temperature, or the strip heaters used to back up the heat pump, would require an input of approximately 30 kW to match the output of the gas furnace, or approximately 60 times the electric input required to operate the gas furnace. The installed cost of the Tesla Powerwalls required to operate the heat pump or strip heaters continuously in extremely cold weather for one day would range from $500,000 – 700,000, well beyond the financial reach of most homeowners.

Clearly, the elimination of fossil fuel space and water heating and the elimination of fossil fuel emergency and standby generators would increase the likelihood of deaths caused by grid outages in extremely cold weather. US EPA estimates the value of a “statistical life” at approximately $10 million, so grid outages in extremely cold weather could have both a major human and a major financial cost, with no discernable benefit.

 

Tags: Fossil Fuel Elimination / Reduction, Severe Weather, Energy Ratepayers, Green Energy Transition

The Folly Of Climate Leadership - Highlighted Article

  • 2/29/24 at 06:00 AM

 

From: Forbes

By: Tilak Doshi

Date: January 29, 2024


The Folly Of Climate Leadership


Lessons of UK Energy Policy Failure

Citing an International Energy Agency report, The Daily Telegraph reported on Wednesday that UK electricity prices have risen faster than almost any other developed country since 2019. The price of electricity in the UK rose by 19 percent in 2023 alone, compared to the US where electricity prices have risen by 5 percent annually since 2019. Referencing a separate report from the House of Commons library, the same article finds that the price increases have been driven by taxes and levies linked to the country’s commitment to the “net zero” emissions target which made up almost a fifth of household electricity prices.

Rupert Darwall’s 76-page penetrating analysis of Britain’s energy policy, “The folly of climate leadership: Net Zero and Britain’s disastrous energy policies” with a foreword written by Andy Puzder was published last month by the RealClear Foundation. It provides the context necessary to understand how UK’s political elites practically sleep-walked the country into its binding net zero legislation. The follies of quixotic climate leadership are not Britain’s alone, as the Biden Administration took office three years ago as America’s first “environmental administration”. Mr. Darwall’s analysis provides an excellent assessment of the lessons of Britain’s failing energy policies for those of the Biden administration. Under Democrat leadership, the US government unleashed a tsunami of green subsidies under its misnamed Inflation Reduction Act to achieve its net zero targets.

 

Lies, Damn Lies and Wind Energy

Not to be outdone in its claims to global “climate leadership”, the UK Labour government under Prime Minister Gordon Brown in 2008 committed the country to a legally binding target of reducing carbon emissions by 80 percent by 2050 below the 1990 level. It was all the more remarkable that this policy target was implemented during the global Great Recession that began with the financial crisis in the United States in late 2007 and which lasted until mid-2009. (continue reading)

 

The Folly Of Climate Leadership

 

Tags: Highlighted Article

Energy User Responsibility - ORIGINAL CONTENT

Previous commentaries (Government Responsibility, Renewables Responsibility and Grid Responsibility) dealt with the government, renewables industry and grid operator perceptions of their responsibilities regarding the proposed energy transformation.

Government, at all levels, apparently believes that its responsibility in the proposed energy transition is to establish the goals, set the timeline, pick the winning technologies and incentivize their market adoption. This perception led to Net Zero by 2050, all-electric everything, wind and solar generation, electric vehicles and a variety of incentives, subsidies and mandates.

The renewable energy industry apparently believes that its responsibility in the proposed energy transition is take maximum advantage of federal and state subsidies, incentives, preferences and mandates by installing as much generating capacity as the industry participants can finance and get connected to the grid. The industry also believes that the grid should accept all of its output whenever it is available. The opportunity the industry perceives is the result of Net Zero by 2050, all-electric everything, and the selection of wind and solar as the winning technologies.

The overall responsibility of the utilities, which own and operate the grid and much of the generating capacity which feeds the grid, and the ISOs and RTOs through which they coordinate their generation and transmission operations, is to assure reliable and economical electricity service Their operational and financial performance are overseen by state utility commissions and consumers’ counsels.

Energy users do not escape responsibility during the proposed energy transition. They are already responsible for paying higher electricity rates as a result of the redundant electricity generation investments required by the transition, which would likely continue to grow as the fraction of renewable generation on the grid increases.

Energy users would also be required to replace fossil fueled end use equipment with electric end use equipment as the transition to all-electric everything proceeds. Customers would be responsible not only for the cost of the replacement equipment, but also for the costs of building modifications necessary to accommodate the electric end use equipment. Many customer buildings would likely also require electric service upgrades to support the increased electricity demand. Many sections of the electric distribution grid would also likely require capacity upgrades, which would be reflected in customer bills.

Energy users might also be required to increase the thermal and electrical efficiency of their buildings to reduce energy demand and consumption. Building Green analyzed “The Challenge of Existing Homes: Retrofitting for Dramatic Energy Savings” several years ago. The intent of the energy transition is to accomplish what Building Green refers to as a major energy retrofit, which they estimated would incur an average cost of approximately $50,000 per dwelling unit. No such estimates are available for commercial, institutional and industrial buildings, though the average cost would be substantially greater than for residential dwelling units.

Many industrial fossil fuel energy end uses do not currently have alternative electric replacements. Customers and their equipment suppliers would be responsible for developing and installing electric alternatives. Their transition would require large distribution upgrades and, in some cases, transmission upgrades to serve the increased demand.

Vehicle owners would be required to replace internal combustion engine (ICE) vehicles with electric vehicles, which are currently significantly more expensive than ICE vehicles while offering diminished utility. Battery charging facilities for these electric vehicles would likely require additional customer electric service upgrades as well as distribution grid upgrades which would be reflected in customer electricity bills.

Government is also interested in “herding” individuals, families, businesses and service providers into “15-Minute Cities” to limit the need for personal travel. This would constitute a significant loss of personal freedom for many of those affected.

Much of the cost of the end user changes would likely be offset with government subsidies, which would appear to reduce end user direct costs, but would only transfer that portion of the costs to taxpayers, thus not reducing the societal costs of the changes, but likely increasing them, since the subsidies would be funded with new government interest-bearing debt.  

TANSTAAFL: There ain’t no such thing as a free lunch.

 

Tags: Green Energy Transition, Net Zero Emissions, Energy Ratepayers

Grid Responsibility - ORIGINAL CONTENT

Previous commentaries (Renewables Responsibility and Government Responsibility) dealt with the government and renewables industry perceptions of their responsibilities regarding the proposed energy transformation.

Government, at all levels, apparently believes that its responsibility in the proposed energy transition is to establish the goals, set the timeline, pick the winning technologies and incentivize their market adoption. This perception led to Net Zero by 2050, all-electric everything, wind and solar generation, electric vehicles and a variety of incentives, subsidies and mandates.

The renewable energy industry apparently believes that its responsibility in the proposed energy transition is take maximum advantage of federal and state subsidies, incentives, preferences and mandates by installing as much generating capacity as the industry participants can finance and get connected to the grid. The industry also believes that the grid should accept all of its output whenever it is available. The opportunity the industry perceives is the result of Net Zero by 2050, all-electric everything, and the selection of wind and solar as the winning technologies.

The overall responsibility of the utilities, which own and operate the grid and much of the generating capacity which feeds the grid, and the ISOs and RTOs through which they coordinate their generation and transmission operations, is to assure reliable and economical electricity service. Their operational and financial performance are overseen by state utility commissions and consumers’ counsels.

The utilities are required to connect non-utility generators to the grid. Conventional non-utility generators have historically been subject to economic dispatch. However, the proposed energy transition has changed this process by requiring that the output of connected renewable generators, which cannot be dispatched at will, be taken whenever it is available and supplemented by electricity dispatched from both utility and non-utility generators to meet the contemporaneous demand on the grid. In situations in which the renewable generator output exceeds demand, the grid operators would be expected to store the excess electricity for later use.

As the fraction of subsidized renewable generation connected to the grid increases, the output of the conventional generation to the grid decreases, reducing the revenues to those generators and increasing the rates they must charge to remain profitable. However, the intermittency of the renewable generation requires that the conventional capacity remain operating, even at zero net output, to supply the grid demand when the renewable generation declines significantly or is unavailable. However, conventional generation is being retired far more rapidly than renewable generation is being added to the grid, reducing the capacity reserve margin available to meet peak demand and threatening grid stability and reliability.

The grid operators, which typically connected a relatively small number of relatively high-capacity dispatchable generators, are now required to connect a relatively large number of relatively low-capacity non-dispatchable generators, spread over a far larger geographic area. As the energy transition proceeds, the number of relatively low-capacity non-dispatchable generators would increase dramatically, rendering the continued operation of conventional generation uneconomical. Fossil fueled conventional generation would also be driven from the grid by government edict.

When the rating plate capacity of the connected renewable generation exceeds the capacity of the conventional generation, the grid operators would be required to add dispatchable electricity storage to the grid to satisfy grid demand when renewable generation is unavailable or inadequate. This storage capacity would be recharged using surplus renewable electricity when available, supplemented by conventional generation while available. However, as the conventional generation is retired, additional grid storage capacity would be required, and additional renewable generation capacity would be required to assure that grid storage capacity is charged and available as required.

The grid scale storage required by the energy transition is currently either extremely expensive (short duration) or unavailable (medium to long duration). This would make the grid operators’ responsibility to ensure reliable and economical electricity service very difficult to fulfill.

Finally, there has not been a successful demonstration of a stable and reliable renewable plus storage grid, so there remain questions about whether the grid operators’ responsibilities could be fulfilled.

 

Tags: Green Energy Transition, Renewable Energy, Net Zero Emissions, Power Grid

Renewables Responsibility - ORIGINAL CONTENT

The renewable energy industry apparently believes that its responsibility in the proposed energy transition is take maximum advantage of federal and state subsidies, incentives, preferences and mandates by installing as much generating capacity as the industry participants can finance and get connected to the grid. The industry also believes that the grid should accept all of its output whenever it is available. The opportunity the industry perceives is the result of Net Zero by 2050, all-electric everything, and the selection of wind and solar as the winning technologies. Would that life were so simple.

The renewable energy industry believes that it should be free to install its generation facilities at whatever locations and that the operators of the existing electric utility grid should be responsible for extending the grid to their facilities.

The renewable industry is aware that the output of its facilities varies minute-to-minute, hour-to-hour, day-to-day, week-to-week, month-to-month, season-to-season, and year-to-year. The industry believes that it is the responsibility of the grid operator to smooth renewable generation output, to fill in the gaps when the generators are not operating, and to manage the generation of the difference between the available renewable energy and the contemporaneous demand on the grid.

The renewable energy industry is aware that the electricity it generates displaces energy which would otherwise have been generated by the conventional generators which serve the grid. The industry also recognizes that this displacement reduces the cumulative output and the revenues of the conventional generators, including utility owned generation. The renewable energy industry believes that this is not their problem; and, realizes that it actually benefits their industry by increasing the prices the conventional generators must charge to remain profitable, and thus the prices paid for their renewable energy as well.

The renewable energy industry is aware that, as conventional generators leave the grid as renewable generation increases, conventional generators age out or are required to cease operation by government edict or because their operation has become uneconomic, the gaps in renewable generation would have to be filled by withdrawals from electricity storage systems. The industry also realizes that the transition from conventional generation backup to storage backup would create demand for additional renewable generating capacity. The industry accepts no responsibility for the need for electricity storage to provide a stable and reliable grid.

The renewable energy industry understands that the expansion of intermittent generation of the electric utility grid adversely affects grid stability and reliability and complicates the effective management of the grid. However, the industry accepts no responsibility for these issues and places that responsibility solely on the grid operators.

The renewable energy industry also holds the grid operators responsible for the fact the  industry cannot get new renewable generating capacity connected to the grid as rapidly as it would like. Difficulties with receiving regulatory approvals for transmission grid expansion is viewed as not being the renewable energy industry’s responsibility.

FERC, NERC and several ISOs and RTOs have recognized the potential reliability issues facing the grid and have become more vocal regarding the need for caution as the energy transition proceeds.

With apologies to Ronald Reagan:
The renewable energy industry is like a baby. An alimentary canal with a big appetite at one end and no sense of responsibility at the other.

 

Tags: Electric Power Dispatchable, Electric Power Generation, Electric Power Reliability, Power Grid
Search Older Blog Posts